Category Page

Mobile apps have become indispensable in our daily lives, serving as tools for everything from communication to entertainment. However, many apps come with a frustrating downside: battery drain. Users quickly uninstall apps that consume excessive power, making battery performance a top priority for developers and QA teams. In this blog, we’ll explore the importance of battery drain testing, effective methods for testing battery consumption, and how platforms like Pcloudy can streamline the process. 

Why battery testing is Essential:

Battery life is one of the most critical factors influencing the user experience and overall app retention. In a world where smartphones act as a lifeline for everything—from communication and entertainment to navigation and health tracking—users expect their devices to last longer on a single charge. If an app is consuming excessive battery, users are quick to uninstall it and move to a competitor. 

Top 10 smart phone purchase drivers

The need for battery testing goes beyond just preventing app uninstalls. It also impacts brand perception, user engagement, and overall app performance. Here’s an in-depth look at why battery testing is essential for mobile apps: 

1. Prevents User Uninstalls and Negative Reviews

Mobile users are highly sensitive to resource-heavy apps. A poorly optimized app that drains the battery will likely result in negative app reviews, reduced ratings, and eventual uninstalls. Studies indicate that users uninstall apps that: 

    • Cause a noticeable drop in battery life. 
    • Overuse background processes. 
    • Trigger frequent notifications that wake the device unnecessarily. 

Why it matters: 

A single negative review highlighting excessive battery usage can deter hundreds of potential users. On the other hand, optimizing battery usage improves user satisfaction and encourages positive feedback. 

2. Improves App Performance and Responsiveness

Battery drain is often associated with excessive CPU and memory usage caused by inefficient processes, such as: 

    • Running frequent background tasks. 
    • Continuously accessing location services or sensors. 
    • Repeatedly syncing data with servers. 

By testing for battery consumption, developers can identify and resolve these inefficiencies, leading to a more responsive and lightweight app. 

Why it matters: 

When apps are optimized for resource consumption, they perform smoother, load faster, and are less prone to crashes—leading to a better user experience. 

3. Enhances Brand Reputation and Trust

Apps that are known to consume minimal battery build trust among users. A reputation for delivering resource-efficient apps can significantly enhance a brand’s credibility and increase user loyalty. 

Why it matters: 

Users are more likely to recommend apps that don’t compromise their device’s performance. Conversely, an app infamous for draining the battery can tarnish the brand’s reputation. 

4. Supports Compatibility Across Different Devices

There are thousands of different smartphone models with varying hardware capabilities, operating systems, and power optimizations. An app that performs well on a flagship device might behave differently on mid-range or budget devices. 

Why it matters: 

Battery testing ensures that the app behaves consistently across different devices, regardless of hardware limitations. Testing across multiple devices prevents issues that could disproportionately affect certain user segments. 

5. Ensures Efficient Use of Device Components

Apps often interact with device components such as GPS, Bluetooth, cameras, and sensors. These components are major contributors to battery consumption, especially when used inefficiently. 

Why it matters: 

By conducting battery tests, developers can identify areas where the app uses hardware unnecessarily (e.g., keeping GPS active even when not needed) and implement optimizations to reduce energy consumption. 

6. Improves Compatibility with Wearables and IoT Devices

With the rise of wearable technology, IoT devices, and connected ecosystems, mobile apps often communicate with external devices. These integrations can place additional demands on battery life. 

Why it matters: 

Battery testing ensures that apps remain power-efficient when interacting with wearables (e.g., smartwatches), Bluetooth devices, or smart home systems. This is crucial for providing a seamless, long-lasting user experience. 

7. Supports Compliance with App Store Guidelines

Both Google Play and the Apple App Store emphasize app performance, including battery efficiency. Apps that are flagged for excessive resource consumption may face penalties, such as removal from the app store or poor visibility. 

Why it matters: 

By proactively testing and optimizing battery usage, developers can ensure their apps comply with app store guidelines, maintaining app visibility and discoverability. 

8. Enhances Enterprise Applications and Workforce Productivity

For enterprise apps used by field teams, healthcare workers, or logistics personnel, battery consumption can directly impact productivity. If the app consumes too much power, it can limit the user’s ability to work efficiently throughout the day. 

Why it matters: 

Efficient battery usage in enterprise apps ensures that workers can rely on their mobile devices for an entire workday without constant recharging, improving operational efficiency. 

9. Boosts User Engagement and Retention

Apps with optimized power consumption are more likely to remain installed and used regularly. Battery efficiency can directly impact how frequently users interact with an app and whether they keep it installed. 

Why it matters: 

By addressing battery drain issues early in the development process, developers can create apps that users engage with more frequently, leading to higher retention rates. 

10. Addresses Evolving Consumer Expectations

As technology advances, consumers have grown more aware of resource consumption and expect their favorite apps to be optimized for performance and battery life. 

Why it matters: 

Regular battery testing ensures that your app keeps pace with user expectations, building trust and maintaining competitiveness in the app marketplace. 

Key Battery Testing Scenarios

Battery consumption can vary significantly depending on how the app is used. Here are some key scenarios to consider during testing: 

    • Active usage: Measure the battery drain when the app is in active use. 
    • Background operations: Track the battery usage when the app runs in the background. 
    • Idle state: Assess how much power the app consumes when idle with minimal interactions. 
    • Heavy feature use: Monitor battery drain during resource-intensive tasks like video playback, GPS navigation, or data syncing. 

How to Test Battery Consumption for Android Apps

Testing battery consumption requires both a systematic approach and the right tools. Below are steps to measure battery usage effectively: 

1. Battery Test Flow 

    • Record the battery level before starting the test. 
    • Enable features like location services, data syncing, and streaming, if applicable. 
    • Monitor battery consumption while performing these tasks. 
    • Observe how the app behaves in the background and whether it sends unnecessary analytics or data. 

2. Testing from a User Perspective 

Real-world conditions significantly impact battery performance. Test under: 

    • Diverse network conditions (Wi-Fi, 3G, 4G, roaming). 
    • Different device types and operating systems. 
    • Varying battery health states to simulate real-life scenarios. 

3. Using Real Devices 

Android’s OS fragmentation across OEMs makes it crucial to test on multiple real devices. Device labs or cloud-based platforms, such as Pcloudy, can help simulate these environments efficiently. 

Tools for Battery Testing 

Several tools can assist in monitoring and analyzing battery consumption: 

1. Android Studio Profiler 

A built-in tool for real-time monitoring of CPU, memory, and battery usage. 

2. Battery Historian 

This tool provides detailed insights into battery consumption patterns, highlighting resource-heavy processes. 

3. Third-Party Tools 

    • GSam Battery Monitor: Tracks app power usage and resets testing cycles without draining the battery completely. 
    • Clean Master: Provides instant alerts for excessive CPU or battery usage. 

Why Use Pcloudy for Battery Drain Testing

Pcloudy offers a comprehensive platform for battery consumption testing on real devices. Here’s how it helps: 

    • Real-Time Monitoring: Track battery, CPU, memory, and data consumption in one place. 
    • Diverse Device Coverage: Access a vast range of Android devices to ensure compatibility and performance across different models. 
    • Comprehensive Functional Testing: Test all critical and non-critical app workflows while monitoring resource consumption. 

Conclusion

Battery drain testing is no longer optional; it’s a vital step in delivering apps that users trust and love. By focusing on optimizing battery consumption, developers can enhance user satisfaction, retention, and brand loyalty. Tools like Pcloudy make it easier to test across diverse devices, ensuring your app meets user expectations and marketplace standards. 

Ready to optimize your app’s battery performance? Discover how Pcloudy can help you deliver power-efficient apps. 

Automate with Selenium

Online Android Emulator to Test Apps

Android now occupies the number one place in the world Smartphone arena with a market share of 87% at the end of 2016 that means 9 out of 10 Smartphones in the world run on Android. With such dominance in the space, the creation of mobile apps has reached never before heights. But the constant innovation that fuels this market has major problems in terms of the development and testing timelines. Running an online Android emulator, which used to be a solution once up a time, is not good enough anymore. So what can companies and developers do to stay ahead in the development race? What alternates exist to improve your app’s usability, performance and customer satisfaction? Let us explore.

With the explosion of Smartphones, customers’ screen size is reducing. People are moving from desktops and laptops to Smartphones for their everyday work and personal needs. This massive shift from big screens to a personal device has created a huge opportunity for developers to create tools that can help people with their work and their personal needs. Users can now view their spreadsheets and book movie tickets from their phones.

Want to test your Mobile App?

Join pCloudy Platform!

Signup for Free

 

Apple’s Appstore and Android Play store has become the ‘go to’ place for people to discover apps that meet their requirements. The ratings left on those apps will decide how many people will install those apps. Customers have once again become the king of the market.

Days of unique apps are over. For your every need you will find at least two or more apps, giving you a choice. So if you want people to choose your app, install it, use and positively review it, your app needs to user-friendly, work on most handsets and be bug-free.

In the past, companies and developers determined product lifecycle. They planned the updates, feature upgrades etc based on the resources and other factors. Today the scenario is changed. The Market dictates the timeline. If your app is incompatible with the latest OS, or not render properly, or suck a lot of battery juice, off it goes into oblivion to be replaced by a better app.

The fight for the screen space is constant.

You can win the fight only if you develop faster than others, test it better and offer a good user experience. That means developers will need to compress their development cycle and testers should speed up their testing while at the same time, maintain high usability and reliability of the app.

Android and iPhone both offer an easy to use platform for developers. iPhone has a few products (IP6, IP7, IP8 etc.) and versions (OS 8, OS9, OS10 etc). The permutation of devices and OS makes testing with real devices easier although buying that many Apple devices is quite an expensive investment. You don’t need an online emulator while testing for iPhone.

In contrast, Android has a highly fragmented market. Apart from different versions (KitKat, Jellybean etc), there are different forks of Android (Stock, Cyanogen, OxygenOS etc) and there are also different skins that manufacturers put on their devices (TouchWiz, Optimus, Sense etc). Real android device testing to cover all the combinations is close to impossible and quite expensive.

Enter Online Android Emulators

Online Android Emulator

When they started, online Android emulators were like a boon to developers. They could cross test their apps across different devices without physically buying the phones. Most of the Android emulators were easy to set up and a fairly inexpensive solution. Most importantly, online Android emulators could mimic hardware and software behaviour making easy for developers to identify unexpected behaviour during the early stage testing.

But as the market for apps grew, the demands on the app became even higher. Testing all the features of the app on an Online Android Emulators was not providing the full picture of how the app would behave on a customer’s phone.

For example, a user installs a new app on the phone and the next day he notices the battery is getting low very fast. Looking at the battery usage, he discovers the culprit is the new app and bam! He hits uninstall. He then visits the Playstore and writes a negative review of the app’s battery-sucking problem. The next 20 people who see that review will not install the app.

These kinds of bugs cannot be easily identified using an online android emulator. Apart from that, online emulators are slow because they have to replicate both software and the hardware components. thus slowing down the whole testing cycle.

Online android mobile emulator stimulate android devices on a PC to test an app on a variety of devices and API levels without the need for physical devices. Nox is the best online android emulator although BlueStacks is the best android emulator for online games. Online android emulators come with predefined configurations for various Android phone, tablet, Wear OS, and Android TV devices. There are many online android emulators for iOS available in the market.

Online Android emulators also have other limitations that make them unsuitable for large-scale testing. There are a limited number of OS versions you can run on an Android emulator. Even on a good PC with HAXM acceleration support, you can run approximately 8 emulators at a time. Even if you manage to set up all the online emulators you need, one small problem can send the whole system crashing forcing you to start all over again.

So what can app developers do to speed up their product lifecycle while releasing a relatively bug-free app? Is there any alternative for Online Android Emulators?

real mobile android and ios devices

Testing on real devices has a few important benefits. Your testing can be in real conditions i.e. weather, location network accessibility, interruptions like SMS, calls etc can be tested accurately. You can also validate the screen brightness, visibility in different lighting conditions. Testing on a real device will be a lot faster than on an Android emulator.

The biggest problem in using actual android phones is the cost of buying all the phones you need to test. There are approximately 11k Android phone models in the market making it financially impossible to test on all available Android devices. This is one reason Online Android Emulators became famous in the initial stages.

You can run only one test at a time. If you have staff in another city or country, they cannot access the device. If you need to install an app, you have to do it manually on every device. Apart from that, there is also a question of logistics, maintaining the devices, updating them, etc all of which are time-consuming tasks.

One tactic used earlier involved a combination of using online Android emulators during the early stages and a small selected list of real Android devices during the beta testing. While this would work for a localized team, it still does not optimize device usage and covers a tiny portion of devices while the fragmentation continues. Thus it is not an optimal solution.

Is there a third alternative that can beat the disadvantages of online android emulator and real devices testing?
In recent times, a new mode of testing is gaining popularity among both amateurs as well as professional developers. It is called Mobile cloud testing.

What is Mobile cloud testing?

mobile cloud testing

Testing on real devices using the cloud as the Interface is the new way of balancing the real android testing while making it economical and scalable. As a developer, you need not own any phones or buy expensive software. You connect to a lab that has a huge selection of Smartphones, select the ones you want to test on and start, it is that simple. You can run functional tests, automated tests, performance and other forms of tests easily. Since the interface is cloud-based, you can test from anywhere in the world, at any time.

There will be some changes in the way you set up your test, install an app, etc. All the testing though will happen on actual devices under user-level conditions. You can set the location, observe CPU utilization, battery drainage and pretty much anything else that you can do with a device in your hand. These are the things you can never test with an online Android emulator.

The best part is that you need not invest in any special infrastructure for such a facility. There are independent services providers who can allow you access to the device on a cost per use basis. You can even reserve devices in advance if you want to plan a battery of test over an extended period.

Opting for mobile cloud testing service gives you access to real devices at a fraction of a cost of setting up your own lab. There are no recurring charges as most of them use a ‘pay as you go’ model. You can spend all your time in testing rather than worry about the infrastructure, maintenance and other problems that come from the ‘owning’ model.

While there may not be a cost associated with getting Android emulators, they need a lot of expensive hardware to run a sufficient number of an online android emulator. Mobile cloud testing does not have a problem.

Using Mobile cloud testing, you can cover more ground over a large number of devices than if you were using either only real android device testing or the online android emulator. For example, if you have 10k scenarios to cover, you can spread it over 1k devices through automation rather than 1k test scenarios over 100 different online android emulator.

One of the biggest benefits of testing mobiles over the cloud is that you are more likely to discover bugs that affect real-world customers than what an emulator can reveal. From a user satisfaction perspective, this is probably one of the biggest advantages mobile cloud testing has over online android emulator.

Most of the app development work has moved to the agile methodology which means testing will run almost parallel to development work. You will need a way to speed up the testing process to meet the sprint deadlines.

Using a mobile cloud, it is easy to streamline the testing process whether you are using a DevOps or an agile approach. Continuous testing is a lot easier to streamline over the cloud setup rather than via online Android emulators or even with real devices.

Many development teams are spread across the globe. Cloud setup gives them an easy way to test seamlessly from different geographies.

Security for Mobile apps testing

mobile app testing

Different apps have different needs in terms of security. An Astrology app that gives general predictions may have little data security requirements while a banking app might need the testing to be done in a secure environment. Such clients can always go for a private cloud or even opt for on-premises setup. When you use a good solution provider, you can just hook up your existing devices to their setup and give access to your cross-border teams to test on the devices.

Testing performance issues, be it CPU load, battery discharge or performance over 2G, 3G and other networks work a lot easier when you use the mobile testing via the cloud platform. You can select which network mode you want to be on and apply the test. This kind of flexibility is difficult and sometimes, impossible using an android emulator.

Mobile Apps Performance Testing

mobile apps performance testing

Apart from the need to test for compatibility with existing apps, battery usage, network usage etc, and mobile apps will need to go through a round of performance testing. Due to the ever-increasing storage space in a Smartphone, users tend to store a lot of content on their phones. So it is necessary to find how the increase in storage affects the application performance.

For example, if you are developing a photo gallery, how does your app perform when accessing 5 GBs worth of pictures and videos, v/s accessing 50 GBs worth of pictures and videos? Does it slow the pre-fetch? Customers are very unforgiving of apps that slow down their phones.

In case your app has a server-side component, it is important you run a performance test to verify how many concurrent users the server can handle. There have been many instances where e-commerce sites crashed being unable to keep up with increased demands during holiday sales.

These are a few areas that we cannot test on an online android emulator.

A customer kept waiting is a customer lost

A couple of years ago, it was acceptable to wait for two-three minutes to download an image on a phone. But today if your app takes longer than few seconds to start up, it is killed and replaced. The tide has shifted to the customer’s side in the Appstore and Playstore. The only way to win this game is to be Nimble, easy to use and not crash the phone.

Thanks to Mobile cloud testing, you don’t have to wait for the slow, unreliable online Android Emulators anymore. Testing on Mobile cloud gives you the opportunity to cut your infrastructure cost, speed up your testing cycle, spread your testing over a larger set of devices and gives you close to real-world results. As the completion heats up for the screen space, you have one tool in your kit that can help your app survive the tough jungle of user reviews.

Want to test your Mobile App?

Join pCloudy Platform!

Signup for Free

 

Device Tunnel

 

In the age of mobile apps, a typical developer’s cubicle can be imagined as place where a series of mobile devices are connected with several long USB cables that run into computers. While some developers furiously keep debugging their apps on their computers, there will be others who frequently keep plugging USB cables in and out of the mobile devices to test their apps on various devices.

 

That makes some of us wonder, doesn’t it? What’s the connection between mobile app developers and USB cables?

 

Well, when a developer connects a device to a computer, he will instinctively enable the ‘USB Debugging mode’. When the ‘USB Debugging Mode’ is enabled on an Android device, it opens up a bridge between the Android device and the computer. This bridge grants him a level of access from your computer to your device. What kind of access? This level of access that USB Debugging Mode grants is important when he needs system-level clearance, such as when coding or debugging an app. This mode, also called the Developer Mode, allows newly programmed apps to be copied via USB to the device for testing. Depending on the OS version and the installed utilities, the mode must be turned on to let developers gain access of the device. One such common utility is ADB.

 

What is ADB?

 

One of the most commonly used abbreviations in Android blogs and forums is “adb”. So, what is “adb”?

 

ADB, Android Debug Bridge, is a command-line utility included with Google’s Android SDK. It provides a wide variety of functions for managing your device. As stated in the Android developer site — “Android Debug Bridge (adb) is a versatile tool that lets you manage the state of an emulator instance or Android-powered device.” In simple words, ‘adb’ is a “bridge” through which developers can connect to an Android emulator or a device from a computer to resolve bugs in their applications. The bridge can be accessed via a command line interface from a computer, where the Android SDK is installed. This is done by connecting a device that runs the software through a PC, and feeding it terminal commands. ADB lets you modify your device (or device’s software) via a PC command line.

 

Using ADB with A locally connected devices

 

A simple client-server setup using your USB cable will help you establish an adb connection from a computer to an android device. Once this connection is established, you can send adb commands from your computer via USB to control your android device. Using ADB commands you can move content to and from your phone, install an uninstall apps, back-up and restore your software, run shell commands, run automation scripts and more.

 

But, it certainly raises questions like these:

 

  • We are moving to cloud-based devices, how will we be able to use adb connection with the devices on cloud?
  • Do I have to switch to local devices to if I have to debug my app?
  • Does this mean I cannot use adb bridge when I’m using devices on cloud?

 

Well, the answer is you can establish adb connection with cloud-based devices as well, and it is a much easier process compared to connecting your devices locally.

 

Using ADB with A Remotely connected device

 

Accessing ADB through pCloudy platform – Device Tunnel

 

pCloudy has introduced Device Tunnel, a new add-on to our real mobile device cloud. With Device Tunnel, you can connect and take full control of any Android device using Android Debug Bridge. It provides access to the cloud-based devices through the Android Studio or Eclipse IDE and the command-line tool that’s installed on your computer. What’s more? Many test automation frameworks and developer tools used for evaluation of the app and debugging can hold on to cloud-based devices as if locally connected by USB. For such tools, Device Tunnel acts as a “USB cable” connecting cloud-based device(s) to a local laptop or server. From the point of view of such tools, a cloud-based device appears physically attached. In reality, the Device Tunnel communicates with pCloudy’s servers over Ethernet (LAN or WAN) to reach the cloud-based device.

 

The Device Tunnel allows developers to gain more control over any cloud-based android device. Once a connection is established, the developers can perform the following actions:

 

  • Issue a number of adb commands for debugging, shell creations, port forwarding, and viewing general information about any cloud-based Android device
  • Copying and pushing files to connected cloud-based devices
  • Installing and uninstalling applications on cloud-based devices
  • Debugging apps during development or testing by adding breakpoints, inspecting variables, analyzing runtime metrics to optimize your app and more

 

This comes with the added advantage of accessing and performing these actions on any Android device among of hundreds that are hosted on our Cloud. This ability will also help developers to debug apps and determine the causes behind issues or bugs that are device specific.

 

On the whole, the Device Tunnel will aid developers and testers who need quick access to diverse devices for brisk evaluation of app and debugging. It enables developers and testers to instantly connect to any device hosted on cloud and easily identify problems by running interactive debug sessions.

 

To know more on how to connect any device on pCloudy using Device Tunnel click here