Webinar:-Step into the future of Next-Generation Testing by learning to accelerate your testing with AI in our webinar Register Now !
Our vision, team, unique culture and values define us
We work with our global partners to help customers digital confidence
Join us in our journey to create a transformative product
Test mobile apps on real devices anytime anywhere.
Test desktop web apps on browser-OS combinations anytime anywhere.
Create automation scripts faster to achieve in sprint Automation
Extend Test coverage by adding AI based visual validations
Run tests at scale on multiple devices and browsers in parallel
Debug faster with auto generated comprehensive test reports
Implement continuous integration and delivery DevOps Plug-ins.
Certifaya
Appium Recorder
Use Cases
Device Planner new
The continuous testing platform for enterprises looking for security and reliability.
Plans tailored for individuals, small and medium-sized teams
Get useful information on apps testing and development
Interact with our experts sharing insights into the world of digital technology
Watch all the product and organizational updates
Know how pCloudy helped organizations gain advantage in app testing
Learn remote app testing through our smartly designed certification courses
A place for QA enthusiasts to learn, grow and build the future of QA together !
Whitepaper
Documentation
API Reference
Welcome to the 4th edition of our Annual Testing Report. This time we've taken the liberty of reaching out to experts in the field of Artificial Intelligence and App Testing...
See more
Test cases are the first step in any testing cycle and are very important for any project. If anything goes wrong at this step, the impact gets proliferated in the entire software testing process. This can be avoided if the testers use proper procedure and guidelines while creating the test case template.
In this blog, I am going to share some simple yet effective tips which you could use for writing effective test cases. These tips will save you time and effort while optimizing the use of resources.
Let’s have a look a the tips to write better test case template.
Domain knowledge in information technology means deep knowledge of business and operational dynamics, the risks involved and the opportunities in that particular project. It is required to follow the best practices in the domain.
It is better to break the test case into a group of smaller ones if it has too many steps. It would be easier for the developer to backtrack and repeat the test steps if an error occurs somewhere in the test script. If not done than there are high chances that the developer will miss the bug.
Before starting on the test case it is suggested confirm all the assumptions that apply to the test and the preconditions that must be met before execution. There can be data dependency or the dependencies on the test environment or any other test cases.
Relevant artifacts should be attached to the test cases. This can be done using a test management tool. At the time of product delivery, It will help to track the changes in the application. I will be easy to understand the flow of the function when there is a change at any step which will not be easy to relate otherwise.
While writing a new test case a tester can share test data wherever applicable to be used for the Test Case within the test case description or add with the specific test case step. This will save time as there is no need to look for the test data anywhere else.
If the values are to be verified then testers can specify the value range or describe what values are to be tested for a particular field. Choose a few values from each class which will give good coverage for your test. It’s better not to mention the real test data value but the type of data which is required to run the test. In projects where multiple teams use the test data and it keeps changing, mentioning only the type of data will be a wise choice.
Use a test management tool to manages your test cases instead of using a spreadsheet. There are many test management tools that can be used to organize the test cases in one place which will increase the productivity of the team.
It is better to refer to the specification document. Assumptions about the features or functionalities can lead to disagreements between the client and the developers. This gap between the client’s requirement and the application under development will impact the business.
To write tests which are easy to understand, we have to stop coding on autopilot and pay attention to the naming conventions. It is required to name our test classes, fields of our test classes, test methods and the local variables while writing automated tests for our application.
It does not matter which team member wrote the test, others will know what feature is tested under what scenario without even looking at the test code.
If the testers miss a bug or write test cases that do not relate to the real world scenarios then it’s just a waste of resources and time. The goal is to meet the customer’s expectations and that can be attained only if the testers think from the users perspective.
It is important to write well-defined test case verification steps covering all the verification points for the feature under test. To make sure that the test Case covers all the verification points match your test case steps with the artifacts given for your project.
Do test automation when needed as it will reduce the manual effort and save a lot of time. The test scripts should be written in such a way that they can be used afterward for some other project.
Create test case template which could be re-used in the future by other teams. Also, before writing a new test case for your module, find out if there are similar test cases written already for some other project. Doing this you will avoid any redundancies in your test management tools. Call the existing test case in pre-conditions or at a specific design step if there is a need for a particular test case to execute some other test case.
Test cases should include all the features and functionalities mentioned in the software requirement. Requirement traceability matrix will help in finding the untested functions of the application.
A test run is a collection of test cases that testers should execute in a particular order. Test cases are often grouped in test runs. It’s preferred to put preconditions at the beginning of a test run rather than inserting them into each test case.
Actually, only a few of the test cases need preconditions, so the field is often left empty. A test management tool will help to customize your forms and create a test case template which will save your time and effort when writing test cases. Another thing to keep in mind is to avoid writing the same instructions several times by moving repeated preconditions to a test run.
The test cases should be well defined with comments where ever needed so that any other software tester can work on it in the future. Whatever project you work on, when designing test cases, you should always consider that the test cases will not always be executed by the one who designs them. Therefore, the tests should be easily understandable and to-the-point.
In a scenario where the person who wrote all those test cases leaves for some reason and you have a completely new testing team to work with, the entire effort spent during the design phase could go down the drain.
In the description, the testers need to mention all the details about what is going to be tested, what needs to be verified, the test environment and test data.
The information mentioned below should be there in a well-written test case description:
All the test cases should be updated with the new requirements so it’s easier to execute them in the future if there is a need. Even if some other tester wants to use the test case he/she wouldn’t have to go through the details of the script.
The tester needs to have good domain knowledge and should write presentable test cases from the users perspective. A good test case template will make it easier for testers to write good test cases. If there are only a few test steps, consider making a checklist instead and have a look at some relevant test case examples before working on your test case. A test case example will be helpful in creating test case templates too. A test management tool will definitely help in improving the way test cases are created and managed.
Related Articles:
No comments yet
In the year 2028, there will be around 7.8 Billion mobile users which accounts for 70% of the world population. More mobile users mean more apps and more competition and to lead the competition we need to make sure that our app is flawless. If nearly half of the bugs in your mobile app are discovered by the users, your app’s ratings are going to decline and so are the downloads. This is why the right choice of mobile app testing techniques must be followed in the decision-making process.
Today, the mobile app market is highly competitive. To be better every day and survive for long, the QA team has to follow a mix of plans that would be responsible for taking the right testing decisions. The testers have to formulate testing strategies to face every situation fearlessly and immaculately. Mobile apps have to be perfect before reaching to the end users so there have to be certain decisions to be taken regarding the testing plan. The following model of mobile app testing plans can be considered for better execution.
In the planning Stage, decisions like Selection of Device matrix, Test Infrastructure (In-house vs. Cloud, Simulator vs. Real device), Testing scope, Testing Tools, Automation (Framework/Tool) are taken. Since it is the first stage, it is the most important one as all the further stages would depend on these decisions. In the next stage which is execution and review, decisions regarding Test Case Design, Testing of user stories, testing types as per Sprint Objective, Progressive Automation, Regression Testing, Review and course correction are taken.
We are going to discuss the planning stage aspects more elaborately
It is an important factor, choosing the device as per your target audience’s behavior matters in decisions regarding resting. There are different approaches to the selection of the device matrix.
Determine the set of devices with your target operating System that will have the highest occurrence of accessing your application by using app purchase data and analytics. For Example- if you support both Android and iOS, and your application will be used across millions of Samsung, Google Nexus and Moto G devices but only thousands of iPhones, you prioritize testing on the Google Nexus and Moto G above the iPhone device. So, this test plan will consist of testing on devices which are prioritized by your market analysis.
This approach highlights the categorization of the devices based on certain mobile aspects which can be considered in formulating the testing strategy. The categorization goes as:
This is another element of the planning stage. This focuses on Strategizing on the Infrastructure components like hardware, software, and network which are an integral part of test infrastructure. It ensures that the applications are managed in a controlled way.
Choosing the right platform to test as per the testing needs is very important i.e whether to test on the Real device or an emulator or on the cloud
Testing on a real device is anytime more reliable than testing on a simulator. The results are accurate as real-time testing takes place on the device in a live environment. It carries its own disadvantages as it is a costly affair and not all the organizations are able to afford a complete real device laboratory of their own.
Pros:
Reliable- Testing on Real devices always gives you an accurate result
Live Environment- Testing on real devices enables you to test your application on the actual environment on which your target audience working on. You can test your application with different network technologies like HSPDA, UMTS, LTE, Wi-Fi, etc.
User experience- Testing on Real devices is the only way to test your Real-time User experience. It cannot be tested through Emulators or devices Available on Cloud.
Cons: Maintaining the matrix- You cannot maintain such a huge matrix of mobile devices in your own test lab. Maintenance- Maintaining these physical devices is a big challenge for organizations. Network providers- There are more than 400 network providers all over the world. Covering all these network providers in their own test lab is impossible. Locations- You cannot test how your application behaves when it is used in different locations.
The emulator is another option to test mobile apps. These are free, open source and can be easily connected with the IDE for testing. The emulator simulates the real device environment and certain types of testing can be run on it easily. However, we cannot say that the results of emulators are as good as those of real devices. It is slower and cannot test issues like network connection, overheating, battery behavior, etc.
Price- Mobile emulators are completely free and are provided as part of the SDK on every new OS release.
Fast- As Emulators are available on the local machine so they run faster and with less latency than Real devices connected to a local network or devices available on the cloud.
Cons:
The wrong impression- Even if you have executed all test cases on emulators, you cannot be 100 % sure it will actually work in the real environment.
Testing Gestures- Gestures like Pinching, Swipe or drag, long press using the mouse on simulators are different in using these gestures on real devices. We cannot test these functionalities on emulators. Can’t test Network Interoperability- With the help of Simulators you cannot test your application with different network technologies. Like HSPDA, UMTS, LTE, Wi-Fi, etc.
Mobile cloud testing can overcome the cost challenges like purchasing and maintaining mobile devices. It has all different sets of device types are available in the cloud to test, deploy and manage mobile applications. The tests run virtually with the benefit of choosing the right type device-OS combinations. Privacy, security, and dependency on the internet can be a challenge in this case but it has many benefits that can cater to different testing scenarios.
The organization can choose the right mix of above-mentioned platforms as every platform carries its own advantages and disadvantages. Sometimes a combination of real and emulators is preferred and sometimes all three can be considered as per the testing strategy.
Devices Availability- Availability of Devices and network providers is a big gain for cloud users. Maintenance- When you are using cloud services. Forget about maintenance. These providers take responsibility for maintaining these devices. Pay per use- You don’t need to buy a device. You only have to pay for the duration you use that device.
Parallel Execution- You can test your complete test suite on multiple devices.
Cons: Cost- Some providers are a bit costly
Nowadays, there are so many automation tools available in the market. Some are expensive and some are freely available in the market. Every tool has its own pros and cons. Choosing the right tool for testing would reduce the QA team effort providing seamless performance at the same time. We will discuss the best mobile app testing automation tools for iOS and Android platforms in 2018.
1. Appium: It is one of the preferred MAT tools by testers. It is open source and free tool available for Android and iOS. It automates any mobile app across many languages and testing frameworks like TestNG. It supports programming languages like Java, C# and other Webdriver languages. It provides access to complete back end APIs and database of the test codes. Top Features: -Appium supports Safari on Ios and Other browsers on Android -Many Webdriver compatible languages can be used such as Java, Objective-C, JavaScript to write test cases -Support languages like Ruby, Java, PHP, Node, Python.
2. Robotium: It is a free Android UI testing tool. It supports in writing powerful black box test cases for Android Applications. It supports Android version 1.6 and above. The tests are written in Java language and basically, Robotium contains a library of unit tests. Apart from this, Robotium takes a little more effort in preparing tests, one must work with program source code to automate tests. Robotium does not have play record and screenshot function.
Top Features: -The tests can be created with minimum knowledge of the project -Numerous android exercises can be executed simultaneously. -Syncronises easily with Ant or Maven to run tests.
3. Calabash: It is an open source MAT tool allowing testers to write and execute tests for Android and iOS. Its libraries enable the test codes to interact with native and hybrid apps. It supports cucumber framework which makes it understandable to non-tech staff. It can be configured for Android and Ios devices. It works well with languages like Ruby, Java, .NET, Flex and many others. It runs automated functional testing for Android and ios. It is a framework that is maintained by Xamarin and Calabash.
4. Espresso: It is a mobile app testing automation tool for Android. It allows writing precise and reliable Android UI tests. It is a tool targeted for developers who believer automated testing is an important part of CI CD process. Espresso framework is provided by the Android X Test and it provides APIs for writing UI tests to simulate user interactions on the target app. Espresso tests can run on Android 2.33 and above. Provides automatic sync of test actions with the app UI.
5. Selendroid: An open source automation framework which drives off the UI of Android native, hybrid and mobile web application. A powerful testing tool that can be used on emulators and real devices. And because it still reuses the existing infrastructure for web, you can write tests using the Selenium 2 client APIs.
6. Frank: Is an open source automation testing tool for the only iOS with combined features of cucumber and JSON. The app code needs not to be modified in this tool. It includes Symboite live app inspector tool and allows to write structured acceptance tests. It is tough to use directly on the device but is flexible for web and native apps. It can run test both on simulator and device. It shows the app in action by showing its recorded video of test runs.
Above are a few promising, popular and most commonly used and mobile app testing automation tools. Choice of tools certainly resolves many testing-related problems faster and efficiently. Implementing these tools requires skill and experience and so an organization needs to have a proper testing team in place to make all of this possible. Related Articles:
We are moving toward a future where everything is going to be autonomous, fast and highly efficient. To match the pace of this fast-moving ecosystem, application delivery times will have to be accelerated, but not at the cost of quality. Achieving quality at speed is imperative and therefore quality assurance gets a lot of attention. To fulfill the demands for exceptional quality and faster time to market, automation testing will assume priority. It is becoming necessary for micro, small, and medium-sized enterprises (SMEs) to automate their testing processes. But the most crucial aspect is to choose the right test automation framework. So let’s understand what a test automation framework is.
A Mobile Testing automation framework is the scaffolding that is laid to provide an execution environment for the automation test scripts. The framework provides the user with various benefits that help them to develop, execute and report the automation test scripts efficiently. It is more like a system that was created specifically to automate our tests. In a very simple language, we can say that a framework is a constructive blend of various guidelines, coding standards, concepts, processes, practices, project hierarchies, modularity, reporting mechanism, test data injections etc. to pillar automation testing. Thus, the user can follow these guidelines while automating applications to take advantage of various productive results.
The advantages can be in different forms like the ease of scripting, scalability, modularity, understandability, process definition, re-usability, cost, maintenance etc. Thus, to be able to grab these benefits, developers are advised to use one or more of the Test Automation Framework. Moreover, the need of a single and standard Test Automation Framework arises when you have a bunch of developers working on the different modules of the same application and when we want to avoid situations where each of the developers implements his/her approach towards automation. So let’s have a look at different types of test automation frameworks.
Now that we have a basic idea about Automation Frameworks, let’s check out the various types of Test Automation Frameworks available in the marketplace. There is a divergent range of Automation Frameworks available nowadays. These frameworks may differ from each other based on their support to different key factors to do automation like reusability, ease of maintenance etc.
Types of Mobile testing automation frameworks:
Module-Based Testing Framework, as the name implies, depends on a number of modules to function. In order to produce the greatest results from the automation test, you would need to develop unique scripts for each module and ensure that they work together. Changes to the application’s functionality won’t have an impact on the modules. The scripts are safe unless they are manually changed. Given that a high level of modularization is produced by merging multiple modules, this provides a cost-effective management approach. Productivity is still at its highest level. But, if necessary, it can take a lot of time and effort to make modifications to the test data individually.
Based on the modular foundation, the library architecture framework for automated testing offers several extra advantages. Instead of separating the programme under test into the many scripts that must be executed, related jobs inside the scripts are found and afterwards grouped by function, allowing the application to be eventually divided up into common goals. The test scripts can access this library of functions anytime they are required.
A number of tests must be run while testing an automation framework before a successful result can be determined. In these situations, you might need to alter the test results to try and draw a different conclusion. You can keep the test data on an external drive and access it later for adding a new script to the test case thanks to the Data-Driven Testing Framework.
The keyword-driven testing framework, which is frequently regarded as an extension of the data-driven testing framework, collects your test data from an external source and securely preserves the set of codes. These codes, which are also known as “keywords,” can be used to change the test script and draw additional conclusions from the test framework. Also, these keywords effectively determine what tasks each programme performs.
To maximize the effectiveness of the aforementioned frameworks, the hybrid testing framework combines the data-driven and keyword-driven frameworks. It provides more room for more efficiency and success, making it the ideal automation foundation.
The goal of the Behavior Driven Development framework is to build a platform that encourages active participation from all users, including developers, testers, business analysts, etc. Also, it improves cooperation on your project between the developers and testers. For this behavior-driven testing, test specifications can be written in plain, non-technical language.
Apart from the minimal manual intervention required in automation testing, there are many advantages of using a test automation framework. Some of them are listed below:
1. Robot Framework Robot Framework is the best choice if you want to use a python test automation framework for your test automation efforts. The Robot Framework is Python-based, but you can also use Jython(Java) or IronPython(.NET). The Robot Framework uses a keyword-driven approach to make tests easy to create. Robot Framework can also test MongoDB, FTP, Android, Appium and more. It has many test libraries including Selenium WebDriver library and other useful tools. It has a lot of API’s to help make it as extensible as possible. The keyword approach used by Robot Framework is great for testers who are already familiar with other vendor-based, keyword-driven test tools, making the transition to open source much easier for them.
2. WebdriverIO WebdriverIO is an automation test framework based in Node.js. It has an integrated test runner and you can run automation tests for web applications as well as native mobile apps. Also, it can run both on the WebDriver protocol and Chrome Devtools protocol, making it efficient for both Selenium Webdriver based cross-browser testing or Chromium based automation. As WebDriverIO is open source, you get a bunch of plugins for your automation needs. ‘Wdio setup wizard’ makes the setup simple and easy.
3. Citrus Citrus is an open-source framework with which you can automate integration tests for any messaging protocol or data format. For any kind of messaging transport such as REST, HTTP, SOAP, or JMS, Citrus framework will be suited for test messaging integration. If you need to interact with a user interface and then verify a back-end process, you can integrate Citrus with Selenium. For instance, if you have to click on a “send email” button and verify on the back end that the email was received, Citrus can receive this email or the JMS communication triggered by the UI, and verify the back-end results, all in one test.
4. Cypress Cypress is a developer-centric test automation framework that makes test-driven development (TDD) a reality for developers. Its design principle was to be able to package and bundle everything together to make the entire end-to-end testing experience pleasant and simple. Cypress has a different architecture than Selenium; while Selenium WebDriver runs remotely outside the browser, Cypress runs inside of it. This approach helps in understanding everything that happens inside and outside the browser to deliver more consistent results. It does not require you to deal with object serialization or over-the-wire protocols while giving you native access to every object. Cypress can synchronously notify you of every single thing that happens inside the browser as you’re pulling your app into it, so that you have native access to every DOM element. It also makes it easy to simply drop a debugger into your application, which in turn makes it easier to use the developer tools.
5. Selenium One of the most popular open source test automation frameworks for web apps. Selenium also serves as a base for a lot of other testing tools as it has cross-platform and cross-browser functionality. Selenium supports a wide range of programming languages such as Java, C#, PHP, Python, Ruby, etc. It is easy to maintain as it has one of the largest online support networks. Selenium is highly extendable through a wide range of libraries and APIs to meet everyone’s needs and requirements. Selenium is preferred by testers as it is possible to write more advanced test scripts to meet various levels of complexity. It provides a playback tool for test authoring without the need to learn a specific scripting language.
6. Cucumber It is a cross platform behavior driven development (BDD) tool which is used to write acceptance tests for web applications. Cucumber is quick and easy to set up an execution and allows reusing code in the tests. It supports languages like Python, PHP, Perl, .NET, Scala, Groovy, etc. Automation of functional validation in easily readable and understandable format. One good feature is that both specification and test documentation are uploaded in a single up-to-date document. Cucumber makes it easy for the business stakeholders, who are not familiar with testing, as they can easily read the code as test reports are written in business readable English. The code can be used together with other frameworks like Selenium, Watir, Capybara, etc.
7. Gauge It is an open source tool agnostic test automation framework for Mac, Linux and Windows. People who work on TDD and BDD will appreciate Gauge’s focus on creating living/executable documentation. Specs – the Gauge automation tests are written using a markdown language with C#, Java and Ruby within your existing IDEs like Visual Studio and Eclipse. Gauge’s functionality can also be extended with its support of plugins. It was developed as a BYOT (Bring Your Own Tool) framework. So you can use Selenium or you can use anything else for driving your tests UI or API tests. If you want a readable non-BDD approach to automation, you should try Gauge.
8. Serenity If you are looking for a Java-based framework that integrates with behavior-driven development (BDD) tools such as Cucumber and JBehave, Serenity might be the tool for you. It’s designed to make writing automated acceptance and regression tests easier. It also lets you keep your test scenarios at a high level while accommodating lower-level implementation details in your reports.
Serenity acts as a wrapper on top of Selenium WebDriver and BDD tools. It abstracts away much of the boilerplate code you sometimes need to write to get started which makes writing BDD and Selenium tests easier. Serenity also offers plenty of built-in functionality, such as handling running tests in parallel, WebDriver management, taking screenshots, managing state between steps, facilitating Jira integration, all without having to write a single line of code.
9. Carina Carina is built using popular open-source solutions like Appium, TestNG and Selenium, which reduces dependence on a specific technology stack. You can test mobile applications (native, web, hybrid), WEB applications, REST services, and databases. Carina framework supports different types of databases like MySQL, SQL Server, Oracle, PostgreSQL, providing amazing experience of DAO layer implementation using MyBatis ORM framework. It supports all popular browsers and mobile devices and it reuses test automation code between IOS/Android up to 80%. API testing is based on the Freemarker template engine and it provides great flexibility in generating REST requests. Carina is cross-platform and tests may be easily executed both on Unix or Windows OS.
10. EarlGray Developers often face difficulty with some of the existing test automation framework in synchronization of the app and the instrumentation. Also, executing tests on apps as synchronized and advanced only when UI elements are visible on the screen has caused issues for many developers. Google EarlGrey has built-in synchronization that makes test scripts wait for UI events to occur before the script tries to interact with the UI of the app. This type of implementation makes the test script concise as all steps of the test script shows how the test will proceed and UI gets synchronized with it. One more key aspect of EarlGrey is that all actions on UI elements happen only on visible elements. This provides a fast and robust approach to ensure UI testing goes through as clicks, gestures and other user interactions do not get done if the UI element is not fully shown.
This list of top tools here represents the best tools that are mature, popular, and provide test automation capabilities using AI/ML to address the challenges that organizations are now facing to deliver Quality at Speed. This list also includes the tools that provide API and services testing which is essential for successful DevOps transformation. The emerging technologies like AI, codeless, big data and IoT testing, are making test automation more efficient while creating opportunities for the existing tools and new players to assert value to the testing communities.
The choice of automation tools should not only meet your current needs but should also focus on potential trends and improvements. An efficient test automation tool should support basic optimization, data generation, smarter solutions, and analytics. As of now, the level of test automation in organizations is low at between 14% and 18%. But organizations are working towards increasing the automation coverage upto 80%. API and services testing is also a trend that should see further development in the future.
Today, there are many smartphone users in the world and so is the popularity of mobile apps. In order to be competent enough, mobile apps have to be unique and should provide the best user experience to increase the user base. With the users getting more informed and intelligent, the apps built should keep up with the pace. In order to be impeccable, the mobile app should undergo a rigorous testing process and during that process, the testing team faces many challenges in this aspect which will be covered in this blog. But before we dive in, let’s look at the different types of apps that are available in the market.
The creation of mobile applications is a fantastic approach to boost brand recognition, attract new clients, and improve the user experience for existing customers. In light of this, let’s examine the three primary categories of mobile apps: native, web, and hybrid.
Native mobile applications are ones created exclusively for a given operating system. As a result, software created for one System cannot be used on another, and vice versa. Native applications are more effective, quick, and offer greater phone-specific functionality. Thus, the difficulties of testing mobile apps for compatibility with native user interfaces of devices involve ensuring that such traits are preserved strictly.
Similar to native apps, web applications do not require users to download them. Instead, the users’ web browsers on their phones can access these apps because they are incorporated within the website. So, it is envisaged that web applications will operate flawlessly across all platforms. Testing teams must carefully examine the application on a wide range of real devices and browsers to ensure high app quality. Yet in addition to taking a lot of time, this operation is essential because failing to work on a few devices can severely reduce the app quality and incur heavy losses when the app doesn’t function as required.
The features of both online and native apps are available in hybrid apps. These are essentially web applications that mimic native apps in design. These applications are easy to maintain and load quickly. Teams that test mobile apps are in charge of making sure hybrid applications don’t lag on some devices. Any operating systems with the capacity to support the said features have access to all their functionality.
While each of these app types are slightly similar to each other the technical teams face a different challenge with each type of mobile application. Combining these challenges greatly increases the complexity, making the entire procedure laborious and time-consuming. Let’s quickly look into what some of these challenges are?
There are different types of operating systems available in the market such as iOS, Android, Windows etc. Also, these OS have different versions too. So, it becomes challenging to test so many versions of the mobile app in a shorter period of time. One app that works well in one type of OS may not work well in the other. It is very important to test the application with all supported platforms and their version because we don’t know where the user is going to install the application. As per research, iOS users upgrade quickly as compared to Android but in Android the device fragmentation is larger. That means the developers have to support older versions and APIs and testers also have to test accordingly.
Android comes with a mix of features and variations in pixels densities and ratios which varies in each screen size. Even in the case of Apple, the screen new size was introduced with the launch of the iPhone 6. Now, it is not just about being picture perfect screen design rather designing an adaptive screen design. Well with such a variety in screen sizes, the role of the tester becomes serious as they need to check if all the features are working well in different screens and pixel and aspect ratios are maintained well.
The picture below shows the number of devices in the market by different brands. The number of device manufacturers has increased. According to OpenSignal, there are around 1294 distinct Android phone manufacturers alone, imagine if we add up other brands. The pace with which this data is increasing is a bit alarming for the testers as the testers have to check the app performances on different devices, they would probably need a device library to do the same. The challenge remains in context to functionalities like Complex user interactions on touch screen and keypad devices as well. Having a device library is certainly is a costly affair unless emulation is adopted which can simulate multiple device types and testing can run easily on it.
Image Source: venturebeat.com
The QA team also faces challenges when it has to test the devices connected to different networks. Generally, there are 2G, 3G,4G mobile data available. These provide different data transfer speed and transmission. These varying speeds of the networks by various providers remain a challenge for the testers even today. In this case, testers have to check that the app must perform well at different network speeds and connectivity quality and a check on bandwidth usage of the app. This remains a challenge as it is partially controllable based on different network providers and connectivity access in different geographies.
Mobile Operating Systems keeps changing. Both Android and iOS have more than 10 versions of their operating systems. They keep enhancing and updating their versions for better performance and user experiences. This frequent OS release comes as a testing challenge as the testers needs to validate the complete application with each of new OS release. It is very important to test the application with the latest OS release otherwise the app performance would be a major issue and consequently loss of users using the app.
Another major challenge of mobile testing is what we call scripting, the method of defining a test. Script execution can either be manual or automated. You can write down the scripts in a document, which is then used by a test engineer who manually interacts with the test environment to determine the result, else you can run automated scripts that in turn drive interaction with the device and app, and record the results.
Automated scripting needs to be kept away from the device to be of any real use because there are so many different devices with different interface options. A script that follows strict keystrokes on an Apple iPhone would not have any chance of working on a Samsung device, because the UI is different. Fortunately, most real device automated testing software provides high-level scripting that operates on the text, image, or object layer. Device emulators can automate testexecution using a higher-level, abstracted scripting language that is not device dependent. When you use automated scripting, the cost of setting up the script will typically be higher than the cost of a single manual execution of a test. But if it is a test script that you run on a periodic basis, every time that you subsequently run the script, the more time and effort you will save. You will eventually recover the cost of initial scripting If you run the script enough.
So to conclude, to build a better user experience, an app tester needs to work had in overcoming the challenges of testing. By adopting some analytical skills and methods, testers can really cope up with these situations. For eg. Testing only those apps and OS which are mostly used by their user segment, by adopting a strong testing strategy to take situational decisions eg. Decisions regarding when to choose Automation and manual testing. Strategically, the challenges can be overcome.
The Android world is not simple. The variety of different aspect ratios and pixel densities can be overwhelming. With the launch of iPhone Xs Max which has a screen size of 6.5 inches, Apple brings new screen sizes to the iOS world as well. Though iOS developers are used to pixel perfect screen design, they now need to change their mindset to the adaptive screen design instead. For testing, it means that we need to check on various devices that all the necessary screen elements are accessible with different screen sizes and aspect ratios. There are many phones with a screen size of 5 inches which are still popular.
Traditional testing tools like selenium and QTP weren’t designed with cross-platform in mind. Automation tools for web apps and mobile apps are different. Operating systems especially Android further adds to the complexity with API level fragmentation. The most common automation testing tools for mobile app automation testing are Appium and calabash. Each tool has it’s own advantages and disadvantages and you need to choose on the basis for your app’s functioning.
Weak Hosting Controls is one of the most common issues. The server on which your app is hosted should have security measures to prevent unauthorized users Weak Encryptions can lead to data theft which will impact the trust factor of the users. Most of the mobile apps require user data such as email ID, password, age, location etc. This data should be encrypted and stored with proper security. Hackers often use this kind of data to get money out of users account online. Encryption will make it difficult for anyone unauthorized to intrude and retrieve that data rather than keeping it in plain text.
We haven’t seen much innovations in the mobile battery but the mobile usage and specifications are increasing rapidly. People are using more apps nowadays and the apps are more complex than ever. This is why testers need to test the apps power consumption because if the apps use lots of CPU cycles and some apps will also run in the background than the battery will drain out quickly. We need to make sure that the app uses less battery power so that users can use it for a longer period of time.
Mobile apps are evolving with device technology and user expectations. Developers are emphasizing on reducing the app size and battery usage. Testers play a major role to ensure that the app works smoothly and does not crash or have bugs. This is why testers must be aware of the latest trends in mobile app testing to deal with the mobile app testing challenges.
Technology is growing exponentially and to be in the game, organisations have no choice but to be technologically enabled. Talking about ‘technology’ basically means creating solutions that are ‘faster, ‘convenient’ and ‘qualitative’. To keep up with the highly demanding technological dynamics, not only human resources need to be equipped with the contemporaneous developments of this industry but there is also a dire need of highly standardized processes in order to deliver the top-class results. That’s when the need of DevOps emerges. Right from the planning through delivery, the idea of introducing DevOps is to maintain the quality streak by a systematic collaboration of development and automation across the continuous delivery and continuous Integration. To make it simpler, there must be a convenient way to tackle the complicated scenarios without delays and for on time delivery. Hence, the introduction of Continuous integration tools makes it easier for the developers to streamline the development processes.
Continuous Integration methodology enables developers to provide immediate reporting whenever any defect is identified in the code so that immediate corrective action can be taken. It is an important part of DevOps that bis used to integrate various Devops stages. The testing process is also automated and the same is instantly reported to the user. There are innumerable Continuous Integration tools available in the market providing access to different unique features. These have open source as well as paid versions, depending upon the need of the user, the most preferred could be selected. Although all the continuous Integration tools are designed to perform the same basic functions but choosing the best suitable CI tool becomes important in the long run. Depending upon many factors like features, cost, ease of use, etc. more than one tools can also be chosen meeting varied needs and not just the single solution. Comparing the best continuous Integration tools that are available in the market, below is the list of 10 best and mostly used Continuous Integration tools which must not be ignored in 2023.
Jenkins is a known and the most common Continuous Integration tool available today. Based on various comparisons, Jenkins tops the list. Jenkins is opensource continuous Integration server-based application that allows developers to build, automate and test any software project at a faster pace. It was originally a part of Hudson project started by Kohsuke Kawaguchi in the year 2004 but it was later on released by the name Jenkins in the year 2011. The tool has evolved over the years and has become the most reliable software delivery automation tool. The source code is in JAVA with few Groovy, Ruby and Antlr files. It has almost 1400 plugins to support the automation of the development tasks. Jenkins supports the entire software development life cycle right from building, testing, documenting and deploying. Jenkins comes with WAR file that allows easy installation of the tool which needs to be dropped into the JEE container and the setup can be run easily henceforth.
Key Features:
1. It is an open-source server for Continuous Integration tool 2. It is written in JAVA and comes with thousands of plugins that help in build, automation and deployment of any software project 3. It can be installed easily on any operating systems 4. User friendly interface that is easy to configure and with easy upgrades.
Buddy is a web-based, self- hosted Continuous Integration (CI) and Continuous Delivery (CD) tool also known as Buddy.Works.Buddy is a serious advancement as one of the trusted CI CD tools. It has an extremely friendly user-interface and is also the simplest tool to use for the web developers, designers and quality assurance teams. Git developers can use this tool for building, testing and deploying the websites and applications using Github, Bitbucket, GitLab codes.
1. Steps for launching containers, automating deployment, and setting up monitoring can be easily customised 2. Build, Ship and Deploy as inbuilt stack feature 3. Can be deployed to any hosting and cloud service providers 4. Supports Grunt. Gulp, MongoDB, and MySQL 5. Real-time reports on progress, logs and history can be monitored 6. Docker based builds and tests.
Teamcity, first released in 2006 is a continuous Integration tool developed by JetBrains. It runs in Java environment and is used to build and deploy different projects. It supports integration with many cloud technologies like Microsoft Azure, VMWare, Amazon.
1. It is a free of cost Continuous Integration tool 2. Supports platforms like Java, .Net and Ruby 3. Allows easy integration with IDEs like Eclipse, IntelliJ IDEA, Visual studio 4. Allows code coverage, inspection and performs duplicates check and creates history reports of any changes made 5. It supports running multiple builds and tests under different platforms and environments.
Bamboo is another Continuous Integration (CI) and Continuous Deployment (CD) software developed by Altassian. It is written in Java and supports other languages and technologies like CodeDeply, Ducker, Maven, Git, SVN, Mercurial, Ant, AWS, Amazon, etc. The tool performs automatic build, testing and deployments. Automation thus saves time and allows developers some extra time to focus on the strategic aspects of the product.
1. Bamboo can build, test and deploy multiple projects simultaneously and in case of any build failure, it provides the analysis and the failure reports 2. Current status of the builds and server status can be monitored with the help of the REST API provided by Bamboo 3. Bamboo supports testing tools like PHPUnit, JUnit, Selenium 4.It is compatible with JIRA and BitBucket 5. Bamboo is related to other products like JIRA, Confluence and Clover by Altassian allowing the developers and the other team members to be at the same page 6. It can also import data from Jenkins.
GitLab Continuous Integration tool is a complete code management platform with multiple mini tools each performing a different set of function for the complete SDLC. It is owned by GitLab Inc and was created by engineers Dmitriy Zaporozhets and Valery Sizov . It provides important analysis on the code views, bug management,CI CD in a single web-based repository which also makes it the most demanded CI CD tool. GitLab CI is written in Ruby and Go and its core functionality is released under an open-source MIT license, keeping rest of the functions under proprietary license.
1. It is directly integrated with the GitLab Workflow 2. Allows all critical information on the code progress in a single dashboard 3. Free for the community edition, the enterprise version is paid one 4. Language Programming CMD build scripts available allowing to program them in any language 5. APIs are provided to allow better product integrations
6.Circle CI
Circle CI is one of the best Continuous Integration and Delivery tool available in the market. CircleCI provides a great platform for build and test automation along with comprehensive deployment process. It can be integrated with GitHub, GitHub Enterprise and Bitbucket to create builds. It also supports on-cloud Continuous Integration. Because of its strong features and efficient performance in this space, it is highly recommended by experts.
1. It easily Integrates with Bitbucket, GitHub, and GitHub Enterprise 2. It allows branch focused deployment 3. It performs easy bug-cleanup, runs tests quickly and is highly customizable 4. Easily integrates with AWS, Google cloud and other services 5. Build tools like Maven, Gradle can be easily integrated
Codeship Continuous Integration tool was acquired by Cloudbees. It is praised by its users for its combination of features for build and deployment. It is efficient, simple and deploys directly from the Github and Bitbucket. Its features of integration and delivery are combined in such a way that it makes more reliable deployment as soon as the code is automatically tested.
1. It allows a very supportive environment when it comes to compatibility with different technologies, languages, deployment in different environments of choice. 2. It has a very fast and strong developer support and is very easy to use. 3. It also supports third party tools integration very well. 4.It requires a single sign-up for Github, Bitbucket and Gitlab 5. Allows simple file management configuration, easy monitoring and scale-up as per the need.
CruiseControl is a Java based Continuous Integration platform. It is popular for allowing various source controls, email notifications and build technologies with the help of plugins. It is written in Java and has versions of .Net (CCNet) and Ruby (CruiseControl.rb.) as well.
1. Supplies builders for Ant, Nant, Maven, Phing, Rake, and Xcode. 2. It is an Open source Framework 3. Allows Custom build loops for build cycles 4.Its web interface provides visual status of the builds 5. Provides JSP Reporting for managing build results
Buildbot is a software development continuous integration platform that allows automatic compilation and testing in order to validate any changes occurred in the project. It is written in Python. Originally created by Brian Warner, it is now maintained by the developer Dustin Michelle. It is popular for performing complex automation testing of the Development Life Cycle processes and for application deployment. This is among one of those tools that allow distribution and execution of programs parallelly on different platforms.
1. It is an Open source Continuous Integration Platform 2. Automates complex building, application deployment and manages complicated software releases 3. Allows time estimation of build completion as it provides real-time insights of the build progress. 4. Uses Python, C and host requirements of Python and Twisted 5. Supports distributed, parallel execution across multiple platforms and provides extensive status reporting
GoCD Continuous Integration server is owned by Thoughtworks. It streamlines the build, automation and deployments of complex build cycles. Its top USP is to enable plugins or design custom plugins for any requirements during the CI CD process. It follows business continuity concept under which it sets up multiple servers is possible in order to keep the data readily available at the time of emergency. It is compatible with Windows, OSX, AWS AMIs, Docker, Debian/APT, RPM/YUM, and Zip. It can run tests in multiple languages and provides robust reports on the insights.
1. It is an opensource Continuous Integration server. 2.It allows the deployment of any preferable versions of applications 3.It easily configures the dependencies based on the last report and allows on demand deployments 4. There are numerous plugins available for this and can also be customized as per the requirement. 5. It re-uses the pipeline configuration keeping the configuration organized with the help of its template system 6. The entire workflow can be tackled and watched with good tracking and feedback system allowing the developer to track changes from committing through deployment at a single place.
The above list of best Continuous Integration tools describes each of the ten tools in detail and covers the best of all along with their main features. This information is insightful for those who still haven’t thought of inculcating these automation tools to build and deploy various aspects of the Software development projects. Continuous Integration, delivery and deployment are very critical and complex systems in the Software theory. They need to be handled with care in order to fetch great results. Choosing the right tool for your business would certainly help handle this responsibility well. It is not about choosing one best tool, but multiple tools can also be selected based on the requirements of the project. As the CI CD continues to grow and evolve, it leaves the innovators with more chances to explore on creating the best versions of such tools.
Technology and innovation are two sides of the same coin. Technology is the power that lets the mankind turn ideas into reality within no time. At pCloudy, the power of innovation has led us to stay aligned and be in pace with the dynamics of the mobile app industry. We cannot afford to let our customers stay deprived of any technological advancements happening in mobile app testing. Once again we are back with another new feature called QR code scanner and we are proud to announce that it is already launched on our platform. Nowadays many mobile applications use QR code scanners for a product or user identification. The QR Code scanning feature in pCloudy enables users to test the QR code feature through mobile applications on multiple devices present in pCloudy. This feature ensures the smooth functioning of the QR code function present in the mobile application. To use this feature, all you need to do is upload the mobile app under test, a QR code image file, and with the help of some simple steps, you can smoothly perform testing of the QR code scanning function of your mobile application. The app will scan the injected QR code. You can scan multiple QR codes while testing your app on different mobile devices. So from now on you can easily perform QR code testing in pCloudy. This feature is supported on Android 5.0 devices and later versions. Supported QR Code file formats are .png,.jpeg and jpg.
Watch our video on QR code scanner feature:
In today’s organizational environment, ‘DevOps’ is the most used buzzword and has become a part of its agile software culture. Organization’s DevOps success is not a single goal approach; it requires deeper involvement for making a switch to DevOps. Broadly, it requires adoption of new DevOps automation tools, contemporary processes and cultural shift, especially in case of Mobile DevOps tools selection. A business has to be equipped with ever-evolving principles and DevOps automation tools in order to embrace these steps to successful DevOps test automation. There are multiple Mobile DevOps Tools with different strengths contributing to a reliable Mobile DevOps process. Today, the businesses and the development teams are investing in intelligent systems that are capable of monitoring the production and development metrics in real-time. This acts as great deal for the development firms unless it covers all important aspects of the process allowing perfect optimization of the resources based on the reports. The journey from planning, development, deployment and beyond, generally called ‘shift left’ process which is a part of continuous testing. In this approach, the testing is mostly focused on earlier stage of production life cycle aiming at delivering applications faster and with much lesser time and money. When it comes to mobile apps testing, the shift left approach works well because the application has to be tested well in order to perform well in the real-environment. In case of Mobile DevOps, using production environment to test the mobile application on real physical devices would help highlight and fix issues in the earlier phases of SDLC, reducing costs and time. Gone are the days when testing was only executed as a final step of the processes where as nowadays, it has to be performed after every build, at every stage of the process. It is with the help of multi-step testing and maximum data capture after each test cycle, that the status of development and testing hasn’t been compromised enabling early bug-fixing and building more strong applications especially when this process is simplified with the help of DevOps automation tools. DevOps and Automation go hand in hand. Despite many challenges, it carries a much strategic role to bring the whole business making faster and better applications. A developer has to have a combination of agile development methods along with Mobile DevOps to win in mobile application; this can be achieved with the help of right DevOps automated testing tools.
Anything related to real development is related to continuous integration whether it is code development or code reviews. The way developers work today by collaborating; integrating all the things together is all a gift of the agile approach which is responsible for making continuous integration popular. With the adoption of continuous integration early stage issues are detected which ultimately reveals any integration glitches, faults in the code commits, etc. It generates a lot of data required for making right choices to be made by the developer as it showcases a lot of data about the mobile application that the developers can use to make the code better. This thus ultimately helps in estimating the scheduling and time consumption more accurately.
Build is nothing but application components that are collected repeatedly and compiles for the purpose of testing to produce a reliable final software product. This is not a one-time job, instead it is a developer’s everyday task of creating various builds of applications. In Mobile DevOps scenario, in order to notify the status of the build, the developers use various version controls and source code management techniques. Software Engineers normally follow branching techniques in case of Mobile DevOps like no branching, release branching, maintenance branching and branching for features.
Testing is something that acts as a backbone of building a quality product. It is the QA team that is responsible of maintaining the sanity of the software, detecting errors early and quick bug fixing. Testing is the most integral aspect of SDLC. Considering the Continuous integration principles, automation testing needs to be automated in order to enjoy the seamless results i.e rich and flawless application. Testing in Mobile DevOps for a production environment should always be performed on real mobile devices and not on Simulators.
Packaging in Mobile DevOps is already known. It is all about tools for package repositories and storage mechanisms for the binaries created during the software build. Binaries like scripts, configuration files and other files facilitate deployments; these are contained in the asset repositories. Continuous deployment eases the application testing and production with the help of automation, flawlessly. Packaging enables the releases of new versions and features of applications to the end-users.
In Mobile DevOps process, there are myriad of tools that are used in aiding in the process of CI/CD and continuous release. As a part of this, there are application release tools as well that help in packaging and deployment of an application right from the development to production, to be available to the final users using automation. Release management is a critical expertise which involves planning of every release and deployment by easy collaboration with the stakeholders. This is accomplished with the usage of release management tools that help stakeholders to plan and execute and trace the releases from a single platform.
Configuration is a second name to Infrastructure as a Service. Configuration tools enhance the cost-effectiveness and create applications with better flexibility and performance. The aim of this process step is to remove any unwanted manual configuration. In DevOps , the focus is on automation and collaboration, so configuration being a part of the ecosystem is also automated across various development flows.
Without valid data, no corrections and improvements can happen. Thus, monitoring becomes a very important aspect of the Mobile DevOps ensuring that the organizations get the right metrics about the processes, stage wise results and final outcome. Continuous monitoring allows stakeholders, developers, testers and other people involved, the access to right information for evaluation and decision making. This step is guide to all teams involved and has an impact on all the other steps. Thus making it a critical process step with Mobile DevOps tools. Traditionally, the Process Steps involved planning, developing, testing and deploying but this is not it, there are many more aspects to it that are the key deciders in selecting the tools and how they fit together to enable tool flow in SDLC. DevOps test automation helps in achieving integrated development and delivery using the right combination of DevOps automated testing tools.
Want to test your Mobile App?
Join pCloudy Platform!
Signup for Free
1 comment
Since pCloudy is committed to provide to you with the newest the fastest, here is another one. The newly released device Apple iOS 14 Beta is now available on pCloudy for you to test your app.
As the world battles with turbulent, uncertain times, most of the workforce across the globe is working remotely. Organizations have acknowledged the importance of remote working as it helps in maintaining business continuity. But in some scenarios, it is difficult to maintain business continuity or distribute resources within the teams while the team is working remotely. For instance, if you have some physical device infrastructure to test your app on multiple mobile devices, how would you do it? How would you share the devices with other testers and developers in your team working from different locations? Most importantly, how will you make sure that the app works smoothly on all the popular devices? We will address these issues in this blog, so buckle up for some interesting insights into the remote testing advantages that can ensure a better app experience for your users.
Device fragmentation is any testers Achilles heel as it limits their potential of extensive testing. Testing from a physical device lab at this global lockdown situation is not feasible, and testing on a few devices won’t yield good results. But this issue can be rectified by testing on a device cloud. In pCloudy, users can test on multiple devices based on the popularity of devices in a particular region and its penetration to get the optimum device coverage. Both manual and automation testing can be performed with unlimited parallel test runs remotely on hundreds of real devices. This is also convenient for globally distributed teams, as the users won’t have to wait for the devices to be available for testing.
Enterprises can ensure better quality apps without missing out on any deliveries by leveraging remote devices for automation testing. pCloudy helps in speeding up automation testing with codeless scripting and test orchestration using integrated tools like Jenkins. Capability configurator is a feature in pCloudy that generates the desired capability based on a set of filters, which saves time and effort while performing test automation. Integration with popular automation and collaboration tools like Appium, Espresso, Jira, etc., makes it convenient for users to perform automated testing on remote devices.
In pCloudy, users can manage teams and distribute credits among themselves. The user management feature allows managers to become the system administrator and create teams to allocate the credits to the members according to the task assigned. This helps in user and task as the hierarchy is maintained to distribute workload systematically. Once the tests are complete, detailed test reports are generated automatically, which can be easily shared across the team. The progressive reports also show the tests failed, passed, and those with errors. This helps in focusing only on the tests that failed and doing a root cause analysis to rectify the issues. Continuous access to a range of devices available for remote testing will provide stability to your CI/CD pipeline.
Enterprise-grade security gives assurance to our users that their data is safe on the cloud platform. Our data centers comply with internationally recognized security standards like ISO27001, SOC2, and SSAE-16. Keeping your security issues in concern, we have another useful feature called Wildnet. This feature enables you to test your internal sites or apps on your local network, keeping all your data and information secure.
Take advantage of next-gen features like Certifaya, an AI-powered autonomous testing bot to save time and effort. FollowMe is another feature that enables the user to run a test on multiple devices in parallel. This will save your resources while reducing the testing time by multifold. Apart from this, there are many features in pCloudy, like taking screenshots, recording the test video, cross-browser testing, etc. that will make manual app testing a piece of cake.
Remote testing is convenient, and it will help you save big bucks while you deliver a better quality app in less time. Continuous access to numerous devices helps in accelerating automation testing, as the app can be tested on multiple devices in parallel. All these advantages of remote testing make it the optimum choice for enterprises.
Remote working is going to be a new normal and remote access tools and platforms will play a key role in maintaining productivity. Working from home has many advantages both for enterprises and teams. There are many tools that help teams to collaborate and share all the information conveniently over the net. pCloudy is one such tool that gives you remote access to hundreds of real devices to test your app. So let’s look at the 10 ways how pCloudy could help in maintaining business continuity while working remotely. 1. Remote access to devices: Test your apps from home by accessing remote devices on pCloudy. You don’t have to worry about touching or managing the devices. 2. Device access to geographically distributed teams: Since testing professionals are working remotely, the problem is sharing the limited number of devices for app testing among the team members. With pCloudy offering a range of devices over cloud, members across different locations can access hundreds of real devices on the cloud for their app testing needs. 3. All in one: Manual and automation testing can be performed remotely on real devices. The platform is well suited for continuous testing and optimizes your DevOps process. 4. Autonomous testing bot: use our AI power autonomous testing bot to minimize the effort and time spent on testing. 5. Team management: Manage platform access to the team members and share detailed app test reports. 6. Parallel testing: Run automation tests in parallel on multiple devices to increase the testing efficiency.
You've made the right choice in choosing the most diverse and reliable Digital Testing Playground. We are sure to transform your App Testing Game.