Suyash Dubey | Posted on | 2 min Read

[xyz-ihs snippet=”quickLinks-Appium”]
 
In our previous chapter on Android, we learned about UI Automator Viewer, Which is available on Android SDK, to get the properties of the application object. In the case of iOS, Appium itself provides an Inspector which helps users to locate those elements in the application.
 
First, open the simulator by clicking on the dock option.
 
Open the simulator

Now in the Device/Simulators window, select the simulator. Open the Appium Desktop and keep the simulator side by side.
 
Device-Simulators

Once the inspector is started, select any of the objects on the screen. It will show you the complete hierarchy and properties of that object.
 
Appium-Test-Automation

At the top of the window, you can see the Record button which is used to record all the actions taken and record the script.
 
Appium-Test-Automation

To select any object, click on the Select Element button and then you can use Tap button to click on an object, Send Keys to enter text and clear to undo the action.
 
Appium-Test-Automation5

As soon as you perform an action on an object, it is recorded in the form of a script.
 
Appium-Test-Automation
Once you are done with the recording you can copy the script and paste in eclipse editor.
 
Appium-Test-Automation
In the next blog, we will learn how to write the first appium script for iOS.
 
Related Articles:

  • Appium vs Espresso: The Most Popular Automation Testing Framework in 2019
  • How To Install Appium On A Mac Machine
  • Writing The First Appium Test Automation Script (Android)
  • Basics of Appium Mobile Testing
  • 8 Common Appium Mobile Test Automation Mistakes and How to Avoid Them
  • Suyash Dubey | Posted on | 2 min Read

    In the previous blog in this series, we learned how to write the first Appium script for Android devices. Now in this blog, we will understand how to start the Appium server.

    The code structure is segregated into three parts, the first part of the code starts the Appium server, the second part stops the Appium server.

    The Code Structure

    The third part is the main method which is necessary to execute the class and from this main method, all the above method are called.

    Starting Appium from code requires a path of two files which are kept inside the Appium folder.

    • node.exe
    • js

     

    Starting Appium Server

    In the code highlighted in red, we have called process class which is a Java class and declared it static.

    Starting Appium Server

    We then created a start server variable and pass the path to node.exe and main.js, highlighted in yellow. In the code highlighted in green, we added both paths into the same variable with spaces and created a method called startAppiumServer() which takes care of the Appium server startup process. Next step is to create an object of Runtime class which is again a java class and call the method getRuntime(), highlighted in blue. We will pass the variable “STARTSERVER” into runtime.exec() method. It will start the Appium Server.

    Once the process is started, we have to store the current state of the process into this variable. We will give a sleep time of 5 seconds as it takes time to start the process. what we are trying to validate here is, if the process is not null; it means that the process is started as highlighted in the gray box.

    Stop Appium Server

    Here we need to create another method named stopAppiumServer(). We again verify the state of the process and if it is not null, call a method of process class destroy().

    Stop Appium Server

    So now we know how to start and stop the Appium server from code. Let’s try to install and launch an app on a mobile device. Let’s see how we can install a .apk file on an Android device and launch it automatically without providing the path in Appium Server.

    Installing and launching the application

    To begin with, we call the stopAppiumServer() method to verify if any instance of Appium Server is already running and if so, then it closes that instance, as highlighted in red. The method highlighted in yellow starts the Appium Server.

    Installing and launching the application

    Then store the apk path file into a variable of File class, which is a Java class as highlighted in blue. Create another variable of File class app. It takes two parameters:

    • The absolute path of the apk file.
    • Name of the apk file.

    Now the absolute path is stored into appDir variable and the name of apk file in the second part as highlighted in the green box. The rest of the things are the same as discussed in the earlier sessions.

    The complete code is shown here.

    Package QA campus

    Appium server installation

    Appium server installation

    Now that you have learned how to launch app from code, let’s move on to the next blog where we will learn how to set up Appium on a Mac machine.

    Suyash Dubey | Posted on | 2 min Read

    In the last blog in this series, we learned how to set up Appium for test automation on a Windows machine. Now we will handle the application by writing the Java code. We will require the following software:

    Eclipse

    Selenium standalone Jar

    Appium Java Client
     

    This process consists of five steps as depicted in the picture below.

    Test Automation

    First, we need to collect the Selenium Standalone JAR and Appium Java Client Libraries. To download the Selenium standalone JAR file, go to seleniumhq.org/download then click on the Download version.

    Test Automation SeleniumHQ

    For Appium Java client you need to go to appium.io/downloads and download the libraries for the selected language.

    Test Automation Downloads

    Now to create a java project download Eclipse from eclipse.org/downloads. Launch Eclipse and select the workspace location.

    Test Automation Eclipse

    To set the Android SDK path into Eclipse, click on the Windows tab in the menu bar and select Preferences in the drop-down list.

    Test Automation

    Then select the Android option and browse your Android SDK location and click on Apply.

    Test Automation Preference

    Launch Eclipse and right-click on Package Explorer. Then select a new Java Project.

    Test Automation Java ADT

    Enter a project name and click finish.

    Once the project is created, add a folder to the project, for the project dependency files [Selenium Standalone] and [Appium Client Library] which you have downloaded.

    Test Automation Package Explorer

    Copy the downloaded file into the newly created project dependencies folder. Select both files and right-click. Then select the add to Build path option and then Add to Build Path. Thus both classes have been added to your project reference libraries.

    Test Automation Package Exp

    Create a class and import the required packages. Now right click on the src folder, hover the mouse over the new option and select the Class option.

    Test Automation Class

    Provide a package name, the name of class then select the main method checkbox.

    Test Automation Java Class

    A .java file within the package is created in Package Explorer panel. An auto-generated the main method is generated on the right panel.

    Test Automation Lauchapp

    You need to define a public class variable of AndroidDriver as your first line of code. You will now see an error for an android driver. Now hover your mouse over the error, you will get a list of quick fixes. Select Import ‘AndroidDriver’. Once you select the import package option, the android driver package will be imported and the error will be removed.Test Automation Android Driver

    Create an object of DesiredCapabilities. Again you will get an error for DesiredCapabilities. Hover the mouse over DesiredCapabilities and then select Import ‘DesiredCapabilities’ from the quick fix list.

    Test Automation Emulator

    Once you select the import package option, the DesiredCapabilities package will be imported and the error will be removed.

    Now set the DesiredCapabilities and also provide the package of an application and the name of application launcher activity.

    Now you need to instantiate the Android driver.

    To do this we need to have two parameters, the first is the Appium server address with the port number which it is running and the Capabilities.

    Test Automation capabilities

    Hover mouse on URL and import URL from Java.net. You will get an error for complete new URL section, hover mouse on the error and select Add throws declaration. By doing so exception has been added into your main method.

    Test Automation Driver

    Now start the Appium server and connect a device to the system. Now return to Eclipse and execute the code. This will launch the app in the device.

    In the code, we have declared the class as public so that we can access it anywhere inside out test.

    Test Automation Diving Deep

    The java main method is highlighted in yellow. We created an object of desired capabilities class which you can see in the green box. In method setCapability, there are two parameters. First is the capability name and second is the capability value as highlighted in blue. Then we created an object of AndroidDriver class highlighted in the black box. The code highlighted in gray is the findElement(By) method which can locate an element on the screen.

    Now that you have learned how to write a mobile test automation script using Appium test automation framework, we can move on to the next blog where we will learn how to start the Appium server and launch the app from code.

     
    Related Articles:

  • How to use Appium Inspector for Test Automation
  • Basics of Appium Mobile Testing
  • Inspecting Element on pCloudy Devices Using Appium Desktop
  • Help Guide for pCloudy-java-Connector for Appium
  • Appium vs Espresso: The Most Popular Automation Testing Framework in 2019
  • Suyash Dubey | Posted on | 2 min Read

    [xyz-ihs snippet=”quickLinks-Appium”]
     
    Appium is an open source mobile app UI testing framework. You can test all types of mobile apps and perform automation test on physical devices as well as on emulators and simulators. Appium mobile testing does not have a dependency on mobile device OS and it supports cross-platform app testing as a single API works for both Android and iOS. Appium supports many popular languages like C, PHP, Python, C#, Java, Ruby, JavaScript, etc.
     

    What is Appium Mobile Testing?

     
    When Appium is installed then a server is set up on your machine that exposes the REST API. It receives a command request from the client and executes that command on Android or iOS mobile devices. Then it responds back with an HTTP response. It uses mobile test automation frameworks like Apple instruments or UIAutomator2 to drive the UI of apps.
     

    Approaches to Test Automation

     
    There is two approaches for mobile test automation, Image-based and Object-based approach. Let’s understand both in detail.
     

    Image-Based Approach for Test Automation

     
    This technique of object identification is based on the image processing attributes of the objects in the Application Under Test (AUT). Example: Automate user options like “click, type, drag-drop, mouse actions, etc.”
     

    Visual verification of the expected output

     
    • Not dependent on the platform underneath
    • Can be used to automate emulators as well as a real device.
     
    Image based approach

    The object-based approach of test automation

     
    This technique of test automation is based on recognizing the nativity of the objects in AUT. This nativity reorganization process for each individual object in the application is carried out using different attributes that are assigned to the object.
     
    It is used to extract the application object identifier with its properties from the actual native operating system source code, just like the developer used. This is an accurate and fast method to recognize the buttons, lists and other objects used by the application.
     
    One drawback of the object-based approach is that the recognition of the individual attributes of the object involved restricts these techniques ability to function in test scenarios that require third-party application access. This reduces the automation coverage of utilizing this technique.
     
    Object based approach

    Which approach should we choose?

     
    As we have seen, both approaches have their pros and cons. To get better results, you can merge both approaches and think about devising a hybrid test automation solution.
     
    The combination of OCR (image based) and native (object-based) approach allows users to build a single script that will be portable across different devices. It will make your automation robust and efficient and allows the users to confidently detect the relevant native and GUI defect within the mobile application.
     

    Appium Overview and Architecture

     
    Appium is an HTTP server that manages WebDriver sessions. On iOS devices, Appium proxies command to a UI automation script running on Mac Instruments environment. Apple provides an application called instruments which are used to do a lot of activities like profiling, controlling and building iOS apps. It also provides an automation component where you can write some commands in JavaScript which uses UIAutomation APIs which interact with the app user interface. Appium mobile automation uses these same libraries to automate iOS apps.

    Appium Overview and Architecture

    The Webdriver Script sends a command in the form of HTTP (JSWP) to the Appium Server. Then the Appium Server will then decide as per the request which driver should be initiated. So, in this case, the Appium Server will initiate the XCUITest driver and it will pass the request to the WebdriverAgent which is an IPA (WebdriverAgent.xcproj) developed by Facebook. WebdriverAgent is responsible to send the command to the Application Under Test (AUT) to carry out the actions in the app. Then the response will be sent to the Webdriver Script through the Appium server.
     
    Only iOS 9.3 and above version are supported by the XCUITest Driver. You can find all the capabilities for XCUITest Driver in the link mentioned below.

    https://github.com/appium/appium-xcuitest-driver

    UI Automation Server flow diagram

    The situation is very similar in the case of Android where Appium proxies command to a UIAutomator2 test case running on the device. UIAutomator2 is Android’s UI automation framework which supports running JUnit test cases directly into the device into the command line. It uses Java as the programing language but Appium will make it run from any of the web drivers supported languages.
     
    To answer the question “what is Appium automation?”, let’s have a look at the Appium philosophy.
     
    Appium philosophy
    Appium mobile testing is required for proper execution of continuous integration as it speeds up the overall testing process. Appium mobile testing helps to run the repetitive test which would take more time to perform manually. This is why appium mobile testing is the preferred choice for the developers when it comes to test automation.
     
    In the next blog, we will learn more about Appium mobile testing and how to install/configure the Appium setup on a windows machine.

     
    Related Articles:

  • How to use Appium Inspector for Test Automation
  • Appium Setup for Windows
  • Starting Appium Server and launching the app from code
  • How To Install Appium On A Mac Machine
  • Appium vs Espresso: The Most Popular Automation Testing Framework in 2019
  • pCloudy Appium integration

     

    1. pCloudy-java-Connector for Appium

     

    1.1 Overview

    Appium is an open source test automation framework which is used with wide range of mobile apps that supports only android/ios or both. pCloudy is a popular mobile testing platform integrated with Appium script which enables you to automate test of mobile apps as well. If you have your Appium Scripts (or you plan to build them) in Java then you can use the pCloudy-java-connector.jar to integrate with the pCloudy platform. In case, you don’t have your Appium script then, you will need to use the rest web services APIs which are given in the end of this document.

     

    1.2 Objective of this document

    This user help guide has been developed for pCloudy end users. This help guide will help you to understand the APIs that pCloudy platform provides to integrate your existing Appium Scripts with pCloudy. After the integration, you will be able to execute your Appium scripts from your PC directly to the pCloudy real device cloud.

     

    1.3 System Requirements

    • Java based Appium Script
    • Eclipse or Netbeans
    • >APK or IPA file
    • pCloudy Account
    • pCloudy-java-connector jar

    NoteThe APIs are evolving and we will come back with a better set of APIs & the jar soon. You might need a little tweaking in the code.

     

    1.4 Stepwise Workflow of the APIs for getting an Appium Driver

     

    The basic steps to get APIs for Appium Driver are given below:

    appium testing

     

    1.5 How to get my API Key for using the services

    If you are a registered user then you just need to follow few simple steps to get API key for using our services.

    Login to pcloudy.com –

     

    Appium

     

    After successful login, Instant Access page opens. Now, you finds different devices which can be filtered from the above given dropdown list of devices. From this page, you can book your device by clicking on Book your Device link. Furthermore, you can connect with any given device to perform mobile testing but you will be given 10 minutes only. While performing testing operation on selected device, you cannot perform testing on other device simultaneously.  For this, you need to release previously connected device.

    When you click on settings option, support page opens by default which helps you to drop support ticket. It also includes various options like support, History, Test Runs, UDID, Profile, Credits, Unsubscribe, and API.

     

    1.6 How to integrate my existing Appium Scripts on Java with pCloudy

    You need pCloudy java connector jar file and corresponding APIs for Appium based mobile testing platform, pCloudy. You should add the pCloudy-java-connector.jar in its build path as a reference within the your java project containing appium scripts. See this link to learn how to add reference in eclipse.You can download pCloudy-java-connector.jar from this link –

    http://support.pcloudy.com/solution/articles/9000062255-adding-reference-to-jars-in-eclipse

    While downloading such file, you may come across message as given below which alerts you regarding safety of your computer.

     

    pCloudy java connector jar file

     

    Now, you can reference the JAR file in Eclipse or Android studio. Please refer the link.

    The pCloudy-java-connector.jar comprises the following methods which gives you a wrapper code over the web services. Furthermore, you will not need to call the Rest APIs if you are working on JAVA:

     

    Appium Automation Testing

     

    1.7 Useful Codes to get Web-Driver Object

     

    A. Run on Android Native

     

    public void runExecutionOnPCloudy() {
    Connector pCloudyCONNECTOR = new Connector();

    // User Authentication over pCloudy
    String authToken = pCloudyCONNECTOR.authenticateUser(“abc@gmail.com”, “asd53sd3fa4asd5fsasda”);
    ArrayList selectedDevices = new ArrayList<>();

    // Populate the selected Devices here
    selectedDevices.add(MobileDevice.getNew(“Gionee_Ctrl-V6L_Android_4.4.2”, 73, “Ctrl-V6L”, “Ctrl V6L”, “android”, “4.4.2”, “Gionee”));

    // Book the selected devices in pCloudy

    BookingDtoDevice[] bookedDevicesIDs = pCloudyCONNECTOR.bookDevicesForAppium(authToken, selectedDevices, 5, “friendlySessionName”);
    System.out.println(“Devices booked successfully”);

    // Upload apk in pCloudy
    PDriveFileDTO pDriveFile = pCloudyCONNECTOR.uploadApp(authToken, new File(appPath));
    System.out.println(“ipa file uploaded successfully”);
    pCloudyCONNECTOR.initAppiumHubForApp(authToken, pDriveFile);

    // Get the endpoint from pCloudy
    URL endpoint = pCloudyCONNECTOR.getAppiumEndpoint(authToken);
    System.out.println(“Appium Endpoint:” + endpoint);

    // Create multiple driver objects in multiple threads
    for (int i = 0; i < bookedDevicesIDs.length; i++) {
    Thread.sleep(5000);
    new Thread(getTestCaseClass(endpoint, bookedDevicesIDs[i])).start();
    }
    }

    private Runnable getTestCaseClass(final URL endpoint, final BookingDtoDevice dto) {

    // this will give a Thread Safe TestScript class.

    // You may also like to have this as a named class in a separate file

    return new Runnable() {
    @Override

    public void run() {
    DesiredCapabilities capabilities = new DesiredCapabilities();
    capabilities.setCapability(“newCommandTimeout”, 600);
    capabilities.setCapability(“launchTimeout”, 90000);
    capabilities.setCapability(“deviceName”, dto.capabilities.deviceName);
    capabilities.setCapability(“browserName”, dto.capabilities.deviceName);
    capabilities.setCapability(“platformName”, “Android”);
    capabilities.setCapability(“appPackage”, appPackage);
    capabilities.setCapability(“appActivity”, appActivity);
    capabilities.setCapability(“rotatable”, true);
    AppiumDriver driver = new AndroidDriver(endpoint, capabilities);

    // Your Test Script Goes Here…

    }
    };
    }

     

    B. Run on Android Web

     

    public void runExecutionOnPCloudy() {
    Connector pCloudyCONNECTOR = new Connector();

    // User Authentication over pCloudy

    String authToken = pCloudyCONNECTOR.authenticateUser(“uttam.kumar@sstsinc.com”, “sadf54sad65fds6sdsdsw”);
    ArrayList selectedDevices = new ArrayList<>();

    // Populate the selected Devices here
    selectedDevices.add(MobileDevice.getNew(“Gionee_Ctrl-V6L_Android_4.4.2”, 73, “Ctrl-V6L”, “Ctrl V6L”, “android”, “4.4.2”, “Gionee”));

    // Book the selected devices in pCloudy

    BookingDtoDevice[] bookedDevicesIDs = pCloudyCONNECTOR.bookDevicesForAppium(authToken, selectedDevices, 5, “friendlySessionName”);
    System.out.println(“Devices booked successfully”);
    pCloudyCONNECTOR.initAppiumHubForBrower(authToken, “Chrome”);

    // Get the endpoint from pCloudy
    URL endpoint = pCloudyCONNECTOR.getAppiumEndpoint(authToken);
    System.out.println(“Appium Endpoint:” + endpoint);

    // Create multiple driver objects in multiple threads
    for (int i = 0; i < bookedDevicesIDs.length; i++) {
    Thread.sleep(5000);
    new Thread(getTestCaseClass(endpoint, bookedDevicesIDs[i])).start();
    }
    }

    private Runnable getTestCaseClass(final URL endpoint, final BookingDtoDevice dto) {

    // this will give a Thread Safe TestScript class.

    // You may also like to have this as a named class in a separate file
    return new Runnable() {
    @Override

    public void run() {
    DesiredCapabilities capabilities = new DesiredCapabilities();
    capabilities.setBrowserName(“chrome”);
    capabilities.setCapability(“newCommandTimeout”, 600);
    capabilities.setCapability(“deviceName”, dto.capabilities.deviceName);
    capabilities.setCapability(“platformName”, dto.capabilities.platformName);
    AppiumDriver driver = new AndroidDriver(endpoint, capabilities);
    // Your Test Script Goes Here…
    }
    };
    }

     

    C. Run on IOS

    public void runExecutionOnPCloudy() {
    Connector pCloudyCONNECTOR = new Connector();

    // User Authentication over pCloudy
    String authToken = pCloudyCONNECTOR.authenticateUser(“uttam.kumar@sstsinc.com”, “sadf5sd5fds5sfd5a5fdas1”);
    ArrayList selectedDevices = new ArrayList<>();

    // Populate the selected Devices here
    selectedDevices.add(MobileDevice.getNew(“Apple_iPad2_Ios_7.1.2”, 70, “iPad2”, “iPad 2”, “ios”, “7.1.2”, “Apple”));

    // Book the selected devices in pCloudy
            BookingDtoDevice[] bookedDevicesIDs = pCloudyCONNECTOR.bookDevicesForAppium(authToken, selectedDevices, 5, “friendlySessionName”);
    System.out.println(“Devices booked successfully”);

    // Upload apk in pCloudy
    PDriveFileDTO pDriveFile = pCloudyCONNECTOR.uploadApp(authToken, new File(appPath));
    System.out.println(“ipa file uploaded successfully”);
    pCloudyCONNECTOR.initAppiumHubForApp(authToken, pDriveFile);

    // Get the endpoint from pCloudy

    URL endpoint = pCloudyCONNECTOR.getAppiumEndpoint(authToken);
    System.out.println(“Appium Endpoint:” + endpoint);

    // Create multiple driver objects in multiple threads
    for (int i = 0; i < bookedDevicesIDs.length; i++) {
    Thread.sleep(5000);
    new Thread(getTestCaseClass(endpoint, bookedDevicesIDs[i])).start();
    }
    }

    private Runnable getTestCaseClass(final URL endpoint, final BookingDtoDevice dto) {
    // this will give a Thread Safe TestScript class.
    // You may also like to have this as a named class in a separate file

    return new Runnable() {
    @Override
    public void run() {
    DesiredCapabilities capabilities = new DesiredCapabilities();
    capabilities.setCapability(“newCommandTimeout”, 600);
    capabilities.setCapability(“launchTimeout”, 90000);
    capabilities.setCapability(“deviceName”, dto.capabilities.deviceName);
    capabilities.setCapability(“browserName”, dto.capabilities.deviceName);
    capabilities.setCapability(“platformName”, “ios”);
    capabilities.setCapability(“bundleId”, bundleId);
    IOSDriver driver = new IOSDriver(endpoint, capabilities);
    // Your Test Script Goes Here…
    }
    };
    }

     

    2. Rest APIs if needed to be used in platforms other than Java

     

    https://s3.amazonaws.com/pcloudy-content-distribution/v2/API_USAGE_V2.pdf